
~~~ ~ 

NASA Technical Memoranhm 100572 . -  1. 

THE PAWS AND STEM RELIABILITY 
ANALYSIS PROGRAMS 

[NASA-TPI-100572) THE PAWS A N D  STEM N88-23526 
R E L I A B I L I T Y  ANALYSIS PROGXAHS : N B S A )  45 p 

CSCL 128 
Unclas  

G3/65 0142693 

Ricky W. Butler 
Philip H. Stevenson 

March 1988 

Natml  Aeromutcs and 
Space Adminlstrahon 

Lngkl-c.n(r 
Hamoton. Mrgina 23665 



ABSTRACT 

The PAWS and STEM programs are new design/validation tools. These programs 
provide a flexible, user-friendly, language-based interface for the input of 
Markov models describing the behavior of fault-tolerant computer systems. 
programs produce exact solutions of the probability of system failure and 
provide a conservative estimate of the number of significant digits in the 
solution. 
Taylor series as a solution technique. 
solve numerically "stiff" models. 
properties with regard to their input space; and, an additional strength of 
these programs is that they accept input compatible with the SURE program. 
used in conjunction with SURE, PAWS and STEM provide for a powerful suite of 
programs to analyze the reliability of fault-tolerant computer systems. 

These 

PAWS uses a Pad& approximation as a solution technique; STEM uses a 
Both programs have the capability to 

PAWS and STEM possess complementary 

If 

i 



INTRODUCTION 

Markov models have been used for many years to calculate the probability of 
failure of fault-tolerant reconfigurable computer systems. (See ref. 1.) 
Although fault-tree techniques are frequently employed to analyze the 
reliability of large complex systems, they are not powerful enough to analyze 
the dynamic reconfiguration capabilities of modern computer systems. 
Markov models can include both the fault recovery (e.g. via reconfiguration) 
and fault occurrence behaviors of such systems. 
provide numerical solutions to user-supplied Markov models. 
Markov model using a simple input language. 
can process the model definition and automatically calculate the state 
probabilities of the model for a specified time. 

However, 

The STEM and PAWS programs 
The user defines a 

The STEM and PAWS programs each 

Reliability Modeling of Computer System Architecture 

A model of a fault-tolerant system must capture the fault-occurrence and 
fault-recovery behavior of the system. The system is modeled with a set of 
states and stochastic transitions between the states. The transition times 
between states are governed by these stochastic distributions. 
of the system are delineated properly, then the fault-occurrence transitions 
can be obtained from field data and/or by using the MIL-STD-217D Handbook 
calculation. 
for most electronic devices (see ref. 2 ) .  The system's recovery processes can 
be measured experimentally using fault injection. 
typically represented as a single exponential transition. Experiments made by 
the Charles Stark Draper Laboratory, Inc., on the Fault-Tolerant Multiprocessor 
(FTMP) computer architecture have demonstrated (refs. 3 ,  4 )  that these 
transitions are not exponential. 
using an exponential recovery distribution rather than the "true" distribution 
is negligible.' Sometimes several sequential states are used to model the 
recovery process (i.e. the method of stages). This can increase the accuracy 
of the method. However one must still estimate the rate parameters for each 
stage in the recovery process. Once a system has been mathematically modeled 

If the states 

These transitions have been shown to be exponentially distributed 

The recovery process is 

It is typically assumed that the error in 

1 I n  o r d e r  t o  m o d e l  t h e  n o n - e x p o n e n t i a l  b e h a v i o r  of t h e s e  p r o c e s s e s  
a c c u r a t e l y ,  s e m i - M a r k o v  m o d e l s  a r e  n e c e s s a r y .  



and the state transitions determined, a computational tool such as STEM or PAWS 

may be used to compute the probability of entering the death states (i.e., the 
states that represent system failure) within a specified mission time, e.g., 10 
hours. 

Mathematical models of fault-tolerant systems must describe the processes 
that lead to system failure and the system fault-recovery capabilities. 
first level of model granularity to consider is the unit of 
reconfiguration/redundancy in the system. 
a complete processor with memory. 
CW or memory module is appropriate. 
vectors of attributes such as the number of faulty units, the number of removed 
units, etc. Certain states in the system represent system failure and others 
represent fault-free behavior or correct operation in the presence of faults. 

The 

In some systems this is as large as 

The states of the mathematical model are 
In other systems, a smaller unit such as a 

A semi-Markov model of a degradable quadraplex system is given in figure 1. 
The outputs of the processors in  the quad are voted in  order to mask faults. 

Figure 1. - Semi-Markov model of a degradable quadraplex. 

The horizontal transitions represent fault arrivals. 
exponential rate A. 

These occur with 
The coefficients of X represent the number of processors 

2 



in the configuration that can fail. 
recovery from a fault. 
faulty processor and degrading to a triplex. 

6 , .  
exponential rate 8 , .  

The development of a reliability model of a large, complex system uses the 
same concepts used in the development of the model of the degradable quad. The 
two types of transitions -- failure and recovery -- are still used, but there 
often are many different types of failure and different recoveries for each 
type. Thus, there may be several failure transitions from a state, each 
representing a failure of a different part of the system. 

The vertical transitions represent 
The first recovery is accomplished by removing the 

This occurs at exponential rate 
The second recovery is accomplished by degrading to a simplex processor at 

THE PAWS AND STEM PROGRAM 

The calculation of the probability of entering a death state of a Markov 
model requires the solution of a set of coupled differential equations. 
Because of the large disparity between the rates of fault arrivals and system 
recoveries, models of fault-tolerant architectures inevitably lead to 
numerically stiff differential equations. Due to the inherent difficulties in 
solving such systems of equations, alternative strategies involving model 
decomposition-aggregation (refs. 5, 6) and path traversal probabilities (ref. 
7) have been pursued. Model decomposition-aggregation methods impose limits 
upon the class of architectures potentially modeled. 
probability methods do not suffer from this same limitation, cyclic paths can 
cause this method to be unsuitable. In order to resolve the problems with the 
alternative strategies, two numerical techniques, each specifying measures for 
operating with numerically stiff differential equations, have been programmed 
to calculate system reliability. These programs, entitled PAWS and STEM, share 
a common user interface which is also used by the SURE program (ref. 7,  8 ) .  

While path traversal 

The input language to the PAWS and STEM programs is very straightforward. 
The input model is defined by listing all of the transitions of the model. 
example, the model of figure 1 is defined as follows: 

For 

LAMBDA = 1E-4; 
DELTAl = 2.7E4; 
DELTA;! = 4.7E4; 

( *  Failure rate of a processor * )  

3 



1,2 = 4*LAMBDA; 
2,3 - 3*LAMBDA; 
2 , 4  DELTAl; 
4,5 = 3*LAMBDA; 
5,6 = 2*LAMBDA; 
5,7 = DELTU; 
7,8 = LAMBDA; 

The first three statements equate values to identifiers (i.e. symbolic names). 
The first identifier LAMBDA represents the processor failure rate. 
two identifiers DELTAl and DELTA2 are the rates of the time to degrade to a 
triplex and simplex respectively. 
transitions of the model. 

The next 

The final seven statements define the 

The STEM and PAWS programs currently run under VMS 4 . 4  on VAX-11/750 and 
The programs have VAX-11/780 computers at the NASA Langley Research Center. 

been designed with minimal usage of VMS specific constructs. 
program should be easy to transfer to other systems. 
modules written in Pascal and F O R T " .  STEM'S language, data, and 
computational modules are written in Pascal. 
modules are implemented in Pascal and the computation module is written in 
FORTRAN. 
but uses the graphics library TEMPLATE; this module can be used only by 
installations having this library. Both PAWS and STEM can be installed and 
used without the graphics output module. Alternatively, this module can be 
rewritten using another graphics library. 

Consequently, the 
Each program contains 

In PAWS, the language and data 

The graphics output module for both programs is written in FORTRAN 

The Reliability Workstation Concept 

The ultra-reliability problem is too large to be completely solved by a 
single mathematical approach. 
utilized in different programs, it is possible to have a common input language. 
This set of programs form the basis for a "reliability analysis workstation. 
The STEM and PAWS programs have been designed as part of a reliability analysis 
workstation based upon the SURE input language. 
equivalent to the transition matrix of a Markov/semi-Markov model. 
language is thus fully general and imposes no restriction on the type of model 

Although different solution techniques are 

The SURE input language is 
This 

4 



that can be specified. Of course, some particular models may not be solvable 
by certain numerical methods. 
STEM programs. The ASSIST program automatically generates Markov/semi-Markov 
model descriptions in this language from an abstract language( refs. 9, 10 ) .  

The reliability analysis workstation structure is shown in figure 2. 

This same input language is used in the PAWS and 

Figure 2. - Structure of Reliability Analysis Workstation. 

5 



THE F"DAME"AL MATHEMATICS 

Mathematical Foundation of Markov Models 

A discrete-space, continuous-time Markov model can be translated into an 
equivalent system of coupled differential equations. If the vector 

represents the probability of being in each of the n states of the system, 
and I+.,,,, = [aij] is the transition matrix of the model, then the following 
system of differential equations represents the system: 

The solution to this system of equations is 

- - 
p(t) - p(t, )exp(At) ( 3 )  

Numerical solutions to this problem have been sought and a number of 
methods have been proposed (ref. 11). PAWS and STEM each use a separate 
numerical method for determining exp( At ) ,  the matrix exponential; hence, the 
solvers are complementary with regard to their fundamental mathematics. 
numerical method for each program will be separately described. Each program 
will be compared in a following section to aid the user in selecting a solver 
appropriate to the problem under consideration. 

The 

PAWS Mathematics 

The mathematical basis for evaluation of the matrix exponential in PAWS 
invokes the use of diagonal Pade table rational approximations in conjunction 
with a technique for reducing the norm of the matrix. 
description of this method refer to Ward (ref. 12). 
includes some extensions not utilized here. 

For a detailed 
Ward's description 

6 



For this method, the initial step is to reduce the norm, of matrix A so 

that it is bounded by unity, where 
n 

i=l 
norm,( x ) = max ( E I xij 1 ) .  ( 4 )  

The technique employed results in a norm, less than or equal to one. 
m > 0 such that 2m-1 <= norm, ( A 

Using an 
< 2' , the identity, 

and 

yields : 

Evaluation of exp( At ) now reduces to exponentiating a matrix( B ) whose 
norm, is bounded by unity. Using the p'th diagonal Pade approximation, the 
matrix is exponentiated. The approximation is: 

where 

P (2p - k)!p! 
$ ( X I  = E CkP, Ck = 

k=O (2p)!k!(pk)!. 

In this implementation, p equals 9. See Ward (ref. 12) for the discussion of 
selection of this value of p as appropriate for this purpose. 

STEM Mathematics 

The mathematical basis for evaluation of the matrix exponential in STEM is 
the truncated Taylor series. This method is attributed to Liou (ref. 13). The 
evaluation of the matrix exponential is: 

K 

k=O 
exp(At) = E (At)k/k! 

The series is truncated at K terms. Based upon the truncation point, the 
error introduced due to truncation can be determined (refs.  13, 1 4 ) .  The 
truncation error is minimized for the computer running STEM. 
VAX implementation of double precision floating point arithmetic, the 
truncation error is set to lo-)'. 
during porting of the program. 

For the current 

For other computers it will be adjusted 

7 



For the purpose of determining truncation error STEM requires 
norm,( At ) <= 1.0. (See eqn. 4 . )  In order to scale At when this requirement 
is not initially satisfied, STEM exploits the following equality: 

STEM reports an estimate of the precision of the answer. This estimate is 
based upon methods developed by Ward (ref. 12). 
as a function of the representation of the floating point data type. 

This method determines error 

SELECTING PAWS VERSUS STEM 

The choice between PAWS or STEM is dependent upon the problem a user wishes 
to solve. 
to make an appropriate selection. 

The following discussion should cover the salient points necessary 

A primary consideration is the state size of the model. PAWS can only 
accept models with state size less than or equal to 300. 
models with state size less than or equal to 5000. 

STEM may accept 

When considering model state size, it is important to consider its effect 
on execution speed. 
programs, then the general rule is that PAWS will work faster for smaller 
models ( state size < 50 1 ,  STEM works faster for larger models ( state size > 
100 ) ,  and both execute approximately equally fast in the range of state sizes 
between 50 and 100. 
of execution is the density of transitions between states in the model. 
most models, this will not be an important consideration; but, if many of a 
mcdel's states possess outgoing transitions that number greater than half the 
total state size of the mcdel, PAWS should run faster than STEM. The 
difference in execution speed in these cases is a function of the algorithms 
and data structures utilized by each program and may vary according to the 
computer system on which the programs reside. 

If a model satisfies the size requirements of both 

A secondary factor that also influences the relative speed 
For 

Another consideration in choosing STEM or PAWS is precision of the answer. 
Both programs produce precision estimates for the computed solution; however, 
STEM will generally calculate precision to be less than or equal to the 
precision estimate of PAWS. Both STEM and PAWS will terminate computation if 

8 



the answer has lost all precision, i.e. zero or less digits precision 
remaining. 
states in the model, the length of the time interval for which the solution is 
desired, the absolute magnitude of the transition rates, and the "stiffness" of 
the matrix of rate coefficients. Here, stiffness refers to the ratio of the 
smallest transition rate to the largest. 
precision decreases. If it is found that the number of digits of precision in 
STEM is unacceptable, then it will be necessary to recompute the solution with 
PAWS. 

The factors which affect the precision estimate will be number of 

As each of these factors increases, 

THE PAWS/STEM USER INTERFACE 

Basic Program Concept 

The user of the PAWS or STEM must describe his Markov model using a simple 
language for enumerating all the transitions of the model. 
assign numbers to every state in the system. 
described by enumerating all the transitions. 
providing the source and destination states and the transition rate between 
them. The following statement provides an example: 

The user must first 
The Markov model then is 
This is accomplished by 

1,2 = 0.0001; 

This defines a transition from state 1 to state 2 with rate 0.0001. The 
program does not require any particular units, e.g., hour-' or sec-l; however, 
the user must use consistent units. 
statement described above is the key construct of the PAWS/STEM language, the 
flexibility of the PAWS/STEM programs have been increased by adding several 
features commonly seen in programming languages such as FORTRAN or Pascal. 

Although the transition-description 

The PAWS/STEM programs have been designed to be compatible with the input 
language of the SURE program (ref. 6, 71, which solves semi-Markov models. The 
exponential transitions are interpreted the same in PAWS/STEM as in SURE; 

however, the inputs defining non-exponential transitions are re-interpreted. 
For a summary of differences between PAWS/STEM and SURE see Appendix A. 

The PAWS/STEM input language includes two types of statements -- model- 
definition statements and commands. These will be described in detail in the 
next sections. 

9 



Model-Definition Syntax 

Models are defined by enumerating all of the transitions of the model. 

Lexical Details. - The state numbers must be positive integers between 0 
and the MAXSTATE implementation limit, usually 25,000. 
changed by redefining a constant in the PAWS/STEM programs and recompiling the 
source code.) The transition rates, conditional means and standard deviations, 
etc., are floating point numbers. 
numbers. 

(This limit can be 

The Pascal REAL syntax is used for these 
Thus, all the following would be accepted by the PAWS/STEM programs: 

0.001 
12.34 
1.213-4 
1E-5 

The semicolon is used for statement termination. Therefore, more than one 
statement may be entered on a line. 
blanks are allowed. 
' I * ) ' '  indicates the termination of a comment. 
the use of a comment: 

Comments may be included any place that 

The following is an example of 
The notation " ( * "  indicates the beginning of a comment and 

LAMBDA = 5.7E-4; ( *  FAILURE RATE OF A PROCESSOR * )  

If statements are entered from a terminal (instead of by the READ comaMnd 
described below), then the carriage return is interpreted as a semicolon. 
Thus, interactive statements do not have to be terminated by an explicit 
semicolon unless more than one statement is entered on the line. 

The PAWS and STEM programs prompt the user for input by a line number 
followed by a question mark. For example, 

17 

The number is a count of the syntactically correct lines entered into the 
system thus far plus the current one. 

10 



Constant definitions. - The user may equate numbers to identifiers. 
Thereafter, these constant identifiers may be used instead of the numbers. 
example, 

For 

LAMBDA = 0.0052; 

RECWER = 0.005; 

Constants may also be defined in terms of previously defined constants: 

GAMMA = lO*LLAMBRA; 

In general, the syntax is: 

"name" = "expression" ; 

where ''name" is a string of up to eight letters, digits, and underscores ( ) 

beginning with a letter, and "expression" is an arbitrary mathematical 
expression as described in a subsequent section entitled "Expressions". 

- 

Variable definition. - In order to facilitate parametric analyses, a single 
variable may be defined. "he PAWS/STEM 
program will compute the system reliability as a function of this variable. If 
the system is run in graphics mode (to be described later), then a plot of this 
function will be made. 
with range 0.001 to 0.009: 

A range is given for this variable. 

The following statement defines LAMBDA as a variable 

LAMBDA = 0.001 TO 0.009; 

Only one such variable may be defined. 
number of points over this range to be computed. 
variable over this range can be either geometric or arithmetic and is best 
explained by example. Thus, suppose POINTS = 4 ,  then 

A special constant, POINTS, defines the 
The method used to vary the 

Geometric : 

xv = 1 To* 1000; 

where the values of XV used would be 1, 10, 100, and 1000. 

11 



Arithmetic: 

xv = 1 TDe 1000; 

where the values of XV used would be 1, 333, 667, and 1000. The * following 
the 'ID inplies a geaPetric range. A T(k or simply "3 inplies an a r i m t i c  
range. 

One additional option is available -- the BY option. By following the 
above syntax with BY "increment", the value of POINTS is automatically set 
such that the value is varied by adding or multiplying the specified amount. 
For example, 

sets POINTS equal to 5 and the values of V used would be 13-6, 1E-5, 1E-4, 
1E-3, and 1E-2. The statement 

Q = 3 TQe 5 BY 1; 

sets POINTS equal to 3 ,  and the values of Q used would be 3 ,  4 ,  and 5. 

In general, the syntax is 

"var" = "expression" TO "c"} "expression" { BY "increment" } 

where "var" is a string of up to eight letters and digits beginning with a 
letter, "expression" is an arbitrary mathematical expression as described in 
the next section and the optional "c" is a + or *. 
if it is used, then "increment" is any arbitrary expression. 

The BY clause is optional; 

Expressions. - When specifying transition or holding time parameters in a 
statement, arbitrary functions of the constants and the variable may be used. 
The following operators may be used: 

+ addition 
- subtraction 
* multiplication 
/ division 
** exponentiation 

12 



The following standard functions may be used: 

exponential function 
natural logarithm 
sine function 
cosine function 
arc sine function 
arc cosine function , 

arc tangent function 
square root 

Both ( ) and [ J may be used for grouping in the expressions. The following 
are permissible expressions: 

2E-4 
1.2*EXP( -3*ALPHA) ; 
7*ALPHA + 12*LAMBDA; 

2*LAMBDA + ( l/ALPHA) *[  LAMBDA + (l/ALPHA) 1 ; 
ALPHA*(l+LAMBDA) + ALPHA**2; 

Transition description. - A transition is completely specified by citing 
the source state, the destination state, and the transition rate. The syntax 
is as follows: 

"source", "dest" = "rate"; 

where "source" is the source state, "dest" is the destination state, and "rate" 
is any valid expression defining the exponential rate of the transition. 
following are valid statements: 

The 

PERM 1E-4; 
TRANSIENT - lO*PERM; 
1,2 = 5*PERM; 
1,9 = 5*(TRANSIENT + PERM); 
2,3 = 13-63 

13 



SURE semi-Markov transition description. - The PAWS/STEM programs have been 
designed to interpret SURE input files. 
entry of fast transitions in a specialized, non-exponential form. 
PAWS/STEM, the fast transitions are treated as exponential transitions. To 
enter a fast transition, the SURE user may use either of two methods -- White's 
method or Lee's method (ref. 8 ) .  For compatibility with SURE, PAWS/STEM 
interprets semi-Markov transitions in the form of White's method. 
specified using Lee's method are not interpreted and computation will not be 
performed by either PAWS or STEM once the RUN command is entered (See Ex. 5). 

The mathematics of SURE allows the 
For 

Transitions 

The following syntax is used for White's method: 

"source" , "dest" = <"mu", "sigtl { ,  "frac" } >; 

where 
"mu" 

"sig" 

"frac" = an expression defining the transition probability, p ( F ' )  

= an expression defining the conditional mean transition time, p ( F b )  

= an expression defining the conditional standard deviation of the 
transition time, a( F' ) 

and "source" and "dest" define the source and destination states, respectively. 
The third parameter "frac" is optional. If omitted, the transition probability 
is assumed to be 1.0, i.e., only one fast transition. All the following are 
valid (while in White's mode): 

2,5 = <1E-5, 1E-6, 0.9>; 

THETA = 1E-4; 
5,7 = <THETA, THETA*THETA, 0.5>; 
7,9 = <0.0001,THETA/25>; 

A fast, non-exponential transition specified by White's method is transformed 
to an exponential transition by both PAWS and STEM. Thus, the following SURE 

input comnd : 

1,2 = <Mu,sTD>; 

is interpreted by PAWS/STEM as 

1,2 = 1/Mu; 
14 



If there is more than 1 transition from a state as shown below: 

1,2 = <Mul,STDl,Pl>; 
1,3 = <Mu2,STD2,P2>; ( *  note: P1 + P2 = 1 * )  

then these are interpreted as the following exponential transitions: 

1,2 = Pl/MUl; 
1,3 = P2/MU2; 

By default, the SURE program assumes that the White method will be used. 
If Lee's method is desired, the LEE command must be issued prior to entering 
any fast transition. If the LEE command is issued in PAWS/STEM, no solution 
will be produced and an error message will appear after the RUN connand is 
issued. (See Appendix A. )  

SURE FAST exponential transition description. - This transition description 
is used in the SURE program and is included here to aid compatibility of 
PAWS/STEM with SURE input files. 
user wishes to specify a fast transition using an exponential rate. 
is 

This description is needed in SURE when a 
The syntax 

"source" , "dest" = FAST "rate"; 

and will result in special processing of this transition in SURE. 

PAWS/STEM, this transition description is treated as any other exponential 
In 

transition description. 

m o  types of commands ha 

Commands 

re been included in the ser interface. The first 
type of command is initiated by one of the following reserved word: 

EXIT READ INPUT RUN SHOW I F  

CALC ORPROB DISP SAVE GET PLOT 

15 



The second type of command is invoked by setting one of the following special 
constants 

ECHO L I S T  POINTS START TIME 

equal to one of its pre-defined values. 

EXIT command. - The EXIT command causes termination of PAWS or STEM 
programs. 

READ command. - A sequence of PAWS/STEM statements may be read from a disk 
file. The following interactive command reads PAWS/STEM statements from a disk 
file named SIFT.MOD: 

READ SIFT.MOD 

If no file name extent is given, the default extent .MOD is assumed. A user 
can build a model description file using a text editor and use this comnd to 
read it into either PAWS or STEM. 

INPUT command. - This command increases the flexibility of the READ 
Within the model description file created with a text editor, INFWT command. 

commands can be inserted that will prompt for values of specified constants 
while the model file is being processed by the READ command. 
command 

For example, the 

INPUT LVAL; 

will prompt the user for a number as follows: 

LVAL? 

and a new constant LVAL is created that is equal to the value input by the 
user. Several constants can be interactively defined using one statement, for 
example : 

INPUT x, Y, z ;  

16 



RUN command. - After a model has been fully described to PAWS/STEM, the RUN 
command is used to initiate the computation: 

RUN; 

The output is displayed on the terminal according to the LIST option specified. 
If the user wants the output written to a disk file instead, the following 
syntax is used: 

RUN "outname" ; 

where the output file "outname" may be any permissible VAX VMS file name. 
positional parameters are available on the RUN comnand. These parameters 
enable the user to change the value of the special constants POINTS and LIST in 
the RUN command. For example 

nvo 

RUN (30,2) OUTFILE.DAT 

is equivalent to the following sequence of comnds: 

POINTS = 30; 
LIST = 2; 
RUN 0UTFILE.DAT 

Each parameter is optional so the following are acceptable: 

RUN( 10) ; 
RUN( r 3 ) ;  

RUN( 20,2) ; 

-- change POINTS to 10 then run. 
-- change LIST to 3 and run. 
-- change POINTS to 20 and LIST to 2 then run. 

After a run is completed, the PAWS/STEM program clears all of the transition, 
constant and variable definitions, returning the program state to its original 
state. However, throughout the session, the output of each RUN is stored 
internally. The results of prior "RUNS" are available in special variables 

17 



which can be referenced in future model descriptions or in a CALC command. The 
syntax is as follows: 

#1 -- solution for RUN #1 (no variable) 

# 2 [ 2 1  -- solution for second value of variable on RUN #2 

SHOW conanand. - The value of a constant or variable may be displayed by the 
following command: 

SHOW ALPHA; 

Information about a transition may also be displayed by the SHOW command. 
example, information concerning the transition from state 654 to state 193 is 
displayed by the following command: 

For 

SHOW 654-193; 

More than one constant, variable, etc. may be shown at one time: 

SHOW ALPHA, 12-13, BETA; 

IF conanand. - The IF statement provides a "conditional assembly" capability 
to the PAWS and STEM programs. 
is only processed if the preceding boolean expression is true. 
this statement is: 

The statement following the THEN reserved word 
The syntax of 

IF "expression" "bool-op" "expression" THEN "statement" ; 

where 

"bool-op" is one of the following operators: = < <= > >= 

18 



The following session illustrates this command: 

$ PAWS 

l? x = 1; Y = 2; 
21 IF X = 1 THEN Y = 3; 

Y CHANGED TO 3.00000E+00 
37 SHOW Y; 

Y = 3.00000E+00 
47 IF Y > X THEN 1,2 = 13-4; 
57 SHOW 1-2; 

TRANSITION 1 -> 2: ExPoNENTIAL RATE = 1.OOOOOE-4; 
67 IF X < 0 THEN 2,3 = 1E-3; 
71 SHOW 2-3 

TRANSITION 2 -> 3 NOT FOUND 
81 EXIT 

CALC command. - For convenience, a calculator function has been included. 
This command allows the user to obtain the value of an arbitrary expression. 
For example, if the following commands are entered: 

X = 1.6E-1; 
CALC (x-.12)*ExP(-0.001) + x**3; 

the system responds with: 

= 4.405601999335E-02 

If a variable has been defined prior to issuing the CALC function, the 
expression is computed as a function of the variable over the specified range. 
The PLOT command can be used after the CALC command to obtain a plot of the 
function. The output can be sent to a disk file instead of the terminal by 
using the following syntax: 

CALC "expression" TO "filename"; 

where "filename" is the name of the destination file. 

19 



ORPROB command. - A common complaint about the Markov approach to modeling 
is the rapid growth in state space size as the complexity of a system is 
increased. For large, complex inter-dependent systems, this is often 
unavoidable. But, systems which consist of several isolated subsystems can be 
analyzed easily using the additive law of probability. 

Suppose the probabilities that subsystem 1 and subsystem 2 fail within the 
mission time are PI and P,, respectively. If these subsystems fail 
independently, the probability of system failure, Psys, 
follows : 

can be calculated as 

Psys = P, + p, - (PI )(P, 1. 

If there are failure dependencies between the subsystems, then a single d e l  
must be used. 

The ORPROB command lists all of the previous run output results and then 
See example 4 of the computes the probabilistic OR of the previous runs. 

section entitled "Examples". 
of the ORPROB command. If the variable feature of PAWS/STEM is used and 
LIST = 1, then the ORPROB command does not list out the answers from the 
previous runs. 
given. If LIST = 2 is set prior to issuing ORPROB, then a detailed list of all 
the outputs from the previous runs, along with the probabilistic OR of the runs 
for each value of the variable, is given. 

The PLOT command may be used to plot the results 

Only the probabilistic OR for each value of the variable is 

ECHO constant. - The ECHO constant can be used to turn off the echo when 
The default value of ECHO is 1, which causes the model reading a disk file. 

description to be listed as it is read. 
"Example Sessions. It ) 

(See example 4 in the section entitled 

LIST constant. - The amount of information output by the program is 
controlled by this command. Four list modes are available as follows: 

LIST = 0; No output is sent to the terminal, but the results can still be 
displayed using the PLO" command. 

Only the probability of total system failure is listed. 
the default. 

LIST = 1; This is 

20 



LIST = 2; The probability for each death state in the model is reported 
along with the total probability of entering a death state. 

LIST = 3; The probability for each death state in the model is reported 
along with the total probability of entering a death state. 
probability for all states in the model is then reported. 

The 

If a variable is defined, output according to the list mode is given for each 
value of the variable. 

POINTS constant. - The POINTS constant specifies the number of points to be 
calculated over the range of the variable. 
variable is defined, then this specification is ignored. 

The default value is 25. If no 

START constant. - The START constant is used to specify the start state of 
If the START constant is not used, the program will use the source the model. 

state (i.e. the state with no transitions into it) of the model (if one 
exists.) If there is no source state in the model, the program will use the 
first state entered as the start state. 
there are two or more source states, an error message is issued. The program 
arbitrarily chooses one of the source states as the start state and proceeds. 

If no start state is specified and 

TIME constant. - The TIME constant specifies the mission time. 
example, if the user sets TIME = 1.3, the program computes the probability of 
entering the death states of the model within time 1.3. The default value of 
TIME is 10. 
cons tan t . 

For 

All parameter values must be in the the same units as the TIME 

PAWS/STEM Graphics 

Although the PAWS/STEM programs are easily used without graphics output, 
many users desire the increased user-friendliness of the tool when assisted by 
graphics. 
color graphics monitors (and TEMPLATE support software) enabling the full 
utilization of PAWS/STEM's graphics capability. 
PAWS/STEM available from COSMIC does not contain the graphics software. The 
PAWS/STEM program can plot the probability of system failure as a function of 
any model parameter as well as display the semi-Markov models in a graphical 

The NASA Langley Research Center's AIRLAB contains four Megatek 

However, the version of 

21 



form. 
form of contour plots. 
parameters can be illustrated on one plot. 
picture of the semi-Markov model can be directed by user input or left 
completely to the PAWS/STEM program. 

The output from several PAWS/STEM runs can be displayed together in the 
Thus, the effect on system reliability of two model 

The generation of a graphical 

After a RUN, CALC, or ORPROB command, the PLOT command can be used to plot 
the output on the graphics display. The syntax is 

PLOT <op>, <op>, ... <op> 

where Cop> are plot options. Any TEMPLATE "USET" or "UPSET" parameter can be 
used, but 

XLOG 
YLOG 

xYLoG 

NOLO 

I 

XLEN-5 . 0 
YLEN28.0 

I XMIN=2.0 
I YMIN=2.0 , 

the following are the most useful: 

plot x-axis using logarithmic scale 
plot y-axis using logarithmic scale 
plot both x- and y-axes using logarithmic scales 
plot x- and y-axes with normal scaling 

set x-axis length to 5.0 in. 
set y-axis length to 8.0 in. 
set x-origin 2 in. from left side of screen 
set y-origin 2 in. above bottom of screen 

The PLOTINIT and PLOT+ commands are used to display multiple runs on one plot. 
A single run of PAWS/STEM generates unreliability as a function of a single 
variable. To see the effect of a second variable (i.e. display contours of a 
3-dimensional surface) the PLOT+ command is used. The PLOTINIT command should 
be called before performing the first PAWS/STEM run. This command defines the 
2nd variable (i.e. the contour variable): 

PLOTINIT BETA; 

This defines BETA as the 2nd independent variable. 
BETA to its first value. 
using the PLOT+ command. 
PLOT command. 

Next, the user must set 
After the run is complete, the output is plotted 
The parameters of this command are identical to the 

The only difference is that the data is saved, so it can be 

22 



displayed in conjunction with subsequent run data. Next, BETA must be set to a 
second value, another PAWS/STEM run made, and PLOT+ must be called again. This 
time both outputs will be displayed together. 
displayed together. 

Up to 10 such runs can be 

In order to obtain a graphical display of the semi-Markov model being 
processed, the user must issue the DISP command 

DISP; 

prior to entering any transition commands. 
prompt for the state locations while the model is being defined. 
indicates by joystick input where each state of the model should be located. 
The system automatically pans as the model exceeds the current scope of the 
screen. Once the user indicates where each state should be placed, the program 
automatically draws all the transitions and labels them. The DISP command will 
be more fully explained in the following section. The user may store the state 
location information on disk using the SAVE command. 
state location information is written to file SIFT.MEG by the following 
command : 

This command causes the system to 
The user 

For example, the current 

SAVE SIFT 

State location information may be retrieved from a disk file by using the GET 
command. 
PAWS/STEM session, then the following command will retrieve this information: 

If state location has been stored on disk file FTMP.MEG in a prior 

GET FTIW 

An abbreviation can be used if the location information is on a file with the 
same VMS file name (except the extent) as the command file that describes the 
model. 
abbreviated as: 

For example, the commands GET TRIPLEX.MEG; READ TRIPLEX.MOD may be 

READ TRIPLEX*; 

The extent names must be .MOD for the file containing the model commands and 
.MEG for the file containing the state locations on the graphics display in 
order for this abbreviation technique to work. 

23 



The SCAN and ZOOM commands may be used to peruse the model. 
button is used to end the ZOOM and SCAN commands. 
commands will be described in the subsequent sections. 

The joystick 
Each of the special graphics 

DISP comnd. - The DISP command initializes the model display capability 
of the PMS/STEM programs. 
every transition it processes on the graphics device. 
are represented by circles containing the number of the state. 
are represented by lines connecting the states. 
place to locate a state in the model (i.e., where to put the node of the graph) 
is a difficult problem (even for a human). A simplistic heurism is included in 
the PMS/STEM programs to aid the user in positioning a state with the "wand 
joystick". 
automatic or manual. 
state without prompting the user for joystick input. 
models the picture is often quite ugly, with transition lines crossing in many 
places. In the manual mode the program selects a position and sets the cross- 
hairs at that location. 
the wand button. Otherwise, the position can be changed with the joystick 
prior to hitting the button. 
user issues the following command 

After this command is issued, PAWS or STEM displays 

The transitions 
The states of the model 

The determination of the best 

This heurism can be utilized in two different ways - fully 
In the fully automatic mode, the program places the 

However, for complex 

If the user likes the location, he need only press 

If fully automatic state location is desired, the 

DISP* 

If the manual mode is desired the command 

DISP 

is used. 

The length of the transition selected by the heurism can be specified using 
parameters on the DISP command. 
direction is set at 2 inches. If the default value is not desired, the lengths 
can be changed as shown 

By default the length in both the x and y 

DISP 2.5, 5.6 

This sets the x-length to 2.5 inches and the y-length to 5.6 inches. 

24 



Finally the DISP command can be used to generate a hard-copy of the screen on 
the plotter via the following syntax 

DISP COPY 

GET and SAVE commands. - Once the locations of the states have been 
established using either the manual joystick input method or the automatic 
heuristic method, this information can be saved on a file using the SAVE 
command. The syntax is simply 

SAVE "filename" 

where "filename" is in VMS file syntax. 
can be retrieved using the GET command: 

In future sessions this information 

GET "filename" 

If no VMS file-name extent is given, the program assumes it to be .MEG by 
default. The format of the file is simple and can be edited using a text 
editor if desired. 
a particular state's location. 
the second column contains the x-coordinates and the 3rd column contains the y- 
coordinates, for example: 

The format is 3 columns of numbers, with each row defining 
The first column contains the state numbers, 

30 1.250000 118.7500 
3 1  4.250000 118.7500 
32 7.250000 118.7500 
20 4.250000 115.7500 
21 7.250000 115.7500 

If a row is deleted by the editor, then if this file is used in a later session 
(i-e., using the GET command) only the deleted state's location will have to be 
entered via the joystick. 

CLEAR command. - The CLEAR command erases all transitions and state 
However, the CLEAR* erases only the state locations from internal memory. 

locations specified as parameters plus all of the transitions. For example, 

CLEAR* 3,7 

25 



erases all the transitions but retains all state locations except 3 and 7. 
user can then re-issue the READ* (or DISP; READ) command and the program will 
only prompt for states 3 and 7. All of the other states will be located in the 
same place they were in the previous display. 

The 

ZOOM and SCAN commands. - The SCAN command causes the graphics view to pan 

When the final position is selected the wand button can be pressed to 
across the model. 
turned. 
terminate the pan. 

The direction of the pan is in the direction the joystick is 

The ZOOM command causes the graphics display to ttzoom in" or "zoom away" from 
the model. If the wand is pushed forward, the zoom is inward; If the wand is 
pulled backward the zoom is away from the model. This process is also 
terminated by pressing the wand button. 
hard-copy on the plotter is desired. 

At this time the program asks if a 

HARD COPY? (YES=l, NO=O) 

After this the user is asked to select a new center point around which the 
program will re-expand the model to its normal size. This is accomplished 
using the joystick and wand button as in the scan mode. 

SCREEN constant. The size of the display screen can be specified using the 
The display area SCREEN constant. The default size is 10 inches by 10 inches. 

is always square; however, the size of the square can be changed. For example 
if a 6 inch screen is desired the following command should issued prior to the 
DISP command 

SCREEN = 6 ;  

GREEK constant. The GREEK constant specifies whether constants with greek 
names such as LAMBDA, GAMMA, PHI, RHO, etc. should be displayed as greek 
characters on the display monitor (e.g. as A, u, P etc.). IF GREEK = 1 then 
this translation process is performed. 
not done. 
display the model without the transitions labelled at all. 
accomplished by setting GREEK = -1. 

If GREEK = 0 then this translation is 
Sometimes it is desired to The default setting is GREEK = 1. 

This can be 

26 



EXAMPLE SESSIONS 

Outline of a Typical Session 

The PAWS/STEM programs were designed for interactive use. The following 
method of use is recommended. (See example 2.) 

1. Create a file of commands using a text editor describing the Markov 
model to be analyzed. 

2. Start the program and use the READ command to retrieve the model 
information from this file. 

3 .  Then, various commands may be used to change the values of the special 
constants, such as LIST, POINTS, etc., as desired. Altering the value 
of a constant identifier does not affect any transitions entered 
previously even though they were defined using a different value for the 
constant. 
are entered. 

The range of the variable may be changed after transitions 

4 .  Enter the RUN command to initiate the computation. 

Examples 

The following examples illustrate interactive sessions. Unless explicitly 
noted, the example is applicable to both PAWS and STEM regardless of which 
program is used in the example. For clarity, all user inputs are given in 
lower-case letters. 

27 



Example 1. - This session illustrates the interactive use of PAWS/STEM. 

PAWS V5.0 NASA Langley Research Center 

l? lambda = le-5; 
2? 1,2 - 6*lambda; 
3? 2,3 = S*lambda; 

3? 2,3 = 5*lambda; 

51 2,4 = le4; 
6? 4,5 = 2*lambda; 
71 list = 2; 
8? time = 10; 
91 run 

a IDENTIFIER NOT DEFINED 

47 show 2-3; 
TRANSITION 2 -> 3: ExPoNENTIAL RATE = 5.OOOOOE-05 

*** WARNING: SYNTAX ERRORS PRESENT BEFORE RUN 0.300 SECS. CPU TIME UTILIZED 

lo? exit 

The warning message indicates that a syntax error was encountered by the 
program. 
check his input file 
example, the error was corrected in the next line and the model is correct. 
For a list of program-generated error messages see Appendix B. 

If a user is reading a model and receives this message, he should 
to ensure that the model description is correct. In this 

Example 2. - The following session illustrates the norm1 usage of PAWS and 
Prior to using either program, a file TRIADP1.MOD was created with a 

The system uses 3-fold redundancy to mask single processor faults. 

STEM. 

text editor. 
spare. 
a spare is available, the system replaces a faulty processor with the spare. 
If no spare is available the system degrades to a simplex. 

This file contains a description of a triad system with one 
If 

For simplicity, the 

28 



means and standard deviations of both types of recovery are assumed to be the 
same - RECOVER and STDEV respectively. Remember that both PAWS and STEN will 
convert these transition descriptions to exponential descriptions with rate 
equal to l/RECOVER. 

$ paws 

PAWS V5.0 NASA Langley Research Center 

l? read triadpl 
2: LAMBDA = 1E-6 lV* 1E-2; 
3: RECOVER =: 2.7E-4; 
4: STDJW = 1.3E-3; 
5: 1,2 = 3*LAMBDA; 
6: 2,3 = 2*LAMBDA; 
7: 2,4 = <RECOVER,STDEX>; 
8: 4,5 = 3*LAMBDA; 
9: 5,6 = 2"LAMBDA; 
10: 5,7 = <RECOVER,STDEV>; 
11: 7,8 = LAMBDA; 

13: TIME = 6; 
12: POINTS = 10; 

141 run 

LAMBDA P R O M  I LI TY _______---- 
1.OOOOOE-06 
2.78256E-06 
7.74264E-06 
2.154433-05 
5.99484E-05 
1.66810E-04 
4.64159E-04 
1.29155E-03 
3.59381E-03 
1.OOOOOE-02 

------------------- 
1.0043471717057E-14 
8.223332307498OE-14 
7.3300711850539E-13 
7.7498137388032E-12 
1.0467121490686E-10 
1.7712901178553E-09 
3.4327803905355E-08 
7.0466715750014E-07 
1.4604501265457E-05 
2.9277064672170E-04 

3.090 SECS. CPU TIME UTILIZED 
151 exit 

ACCUR RU! ----- CY -------- 
8 DIGITS 
8 DIGITS 
8 DIGITS 
8 DIGITS 
8 DIGITS 
8 DIGITS 
8 DIGITS 
8 DIGITS 
8 DIGITS 
8 DIGITS 

#1 

Note the default value of LIST was used which outputs the total probability of 
system failure for each value of the variable LAMBDA. 
can be used as a variable including TIME. 

Any parameter of a model 

29 



Example 3. - For this example, the probability of being in any state in the 
model is displayed via use of LIST = 3. 

$ stem 

The model is a simple Markov chain. 

STEM V1.0 NASA Langley Research Center 

11 read example3 

3: 1,2 = 4"LAMBDA; 
4: 2,3 = 3*LAMBDA; 
5: 3,4 = 2*LAMBDA; 
6: 4,s = LAMBDA; 
7: LIST = 3; 

2: LAMBDA 5: 1.03-4; 

81 run 

PROW1 LITY 

9.96007989343993-01 
3.986024637526OE-03 
5.9820274715225E-06 
3.99001298834143-09 
9.9800216500101E-13 

------------------- 

13 DIGITS 

0.190 SECS. CPU TIME UTILIZED 
91 exit 

Example 4. - The following session illustrates the use of the ORPROB 

command : 

PAWS V5.0 NASA Langley Research Center 

11 echo = 0 
2? read systeml 

4? list = 1 
51 run 

30 



0.110 SECS. CPU TIME UTILIZED 
6? echo = 0 
77 read system2 

97 list - 1 
l o ?  run 

0.030 SECS. CPU TIME UTILIZED 
ll? read system3 

12: 1,2 - 4.0e-2; 
13: 2,3 = 1.0e-1; 

147 run 

0.030 SECS. CPU TIME UTILIZED 
157 orprob 

RUN # LLRERBOUND UPPERBOUND 
---------- ----------- ----------- 

1 6.32121E-01 6.32121E-01 
2 7.7687OE-01 7.768703-01 
3 1.28053E-01 1.28053E-01 

OR PRO6 = 9.28426E-01 9.28426E-01 
------__-- -_-------_- _-_-------_ 

16? exit 

Notice that the results are specified in terms of bounds even though PAWS/STEM 
give exact solutions. 
in each case. Note 
the effect of ECHO = 0. Also demonstrated is LIST = 1 default. 

If the bounds are examined, they can be seen to be equal 
The output has been produced according to the SURE style. 

31 



_ -  

.~ Ex- __ 5. - It has been noted in the text that PAWS/STEM is incompatible 
with a SURE model file using Lee mode semi-Markov transitions. 
demonstrates what will occur when a valid SURE model using the Lee mode is 
entered into PAWS/STEM. 

This example 

$ stem 

STEM V1.0 NASA Langley Research Center 

11 read lee 
2: LEE; 
3: LAMBDA = 1E-4; 
4: RECW = 1800.0; 
5: RHO = 3600.0; 
6: POINTS = 5 ;  
7: GAMMA = 1o*LAMBDA; 
8: PHI = RECOV; 
9: T = RHO + PHI; 
10: E = 2.718281828; 
11: QUANT2 = 1E-2; 
12: 
13: TIME = 10; 
14: 1,2- 3*LAMBDA; 
15: 2,3 = 2*LAMBDA+2*GAMMA; 
16: @2=<1/RECOV,QUANT2,QPROB2>; 
***** STATE OUT OF RANGE 
17: 2,4 = <1.0>; 
18: 4 , 5  = LAMBm + GAMMA; 
19: 1,6 = 3*GAMMA; 
20: QUANT6 = 1E-2; 
21: QPROB6 1.0 - E**(-T*QUANT6); 

QPROB2 = 1.0 - E**(-RECOV*QUANT2); 

22: @6-<l/l’,QUANT6,QPROB6>; 
***** STATE OUT OF RANGE 
23: 6,l = <RHO/”>; 
24: 6,4 = <PHI/”>; 
25: 6,7 = 2*LAMBDA + 2*GAMMA; 
261 run 

*** START STATE ASSUMED To BE 1 

RUN #1 PROBAEI LITY ACCURACY ----- 
-------- ___-------- ------------------- 

*** LEE MODE ILLEGAL IN STEM *** 
0.030 SECS. CPU TIME UTILIZED 
271 exit 

As can be seen, several errors occur. 
only the error message that Lee mode is inappropriate is displayed. 

Most important, no result is reported; 

32 



Example 6. - The mathematics of both PAWS and STEM require scaling of the 
For models d e l ’ s  transition rates in order to satisfy certain assumptions. 

in which the scaling is too severe, an accurate answer cannot be produced. 
What follows is an example using both PAWS and STEM and a very simple model 
with an excessively high transition rate. 
10, the default value. 

It is important to note that TIME = 

$ stem 

STEM V1.0 NASA Langley Research Center 

17 1,2 = le30; 
2? run 

0.270 SECS. CPU TIME UTILIZED 
31 exit 

$ paws 

PAWS V5.0 NASA Langley Research Center 

l? 1,2 = le30; 
2? run 

0.090 SECS. CPU TIME UTILIZED 
3 1  exit 

Neither solver produces an answer to this problem; each reports this somewhat 
differently. 
PAWS generates output that infers this difficulty. It is important to realize 
that it is the magnitude of the transition rate multiplied by the value of time 
that creates this condition. If the transition was respecified with a rate of 
1.0e20 and TIME was set equal to 1.0el1, the result would be the same; however, 
if the rate remained the same and TIME was specified as a small interval, i.e. 
1.0e-20, then a solution would be produced. 

STEM explicitly produces a message that denotes this problem. 

33 



CONCLUDING REMARKS 

The PAWS and STEM programs are new designflalidation tools. These programs 
provide a flexible, user-friendly, language-based interface for the input of 
Markov models describing the behavior of fault-tolerant computer systems. 
These programs produce exact solutions of the probability of system failure and 
provide a conservative estimate of the number of significant digits in the 
solution. By using separate numerical solution techniques, PAWS and STEH 
possess complementary properties with regard to their input space. 
additional strength of these programs is that they accept input compatible with 
the SURE program. 
a powerful suite of programs to analyze the reliability of fault-tolerant 
computer systems. 

An 

If used in conjunction with SURE, PAWS and STEM provide for 

34 



APPENDIX A 

, 

SURE COMPATIBILITY 
PAWS/STEM do not interpret certain commands and constants in the same manner 

as SURE. Unless specifically mentioned, assume that SURE constructs are 
supported by PAWS and STEM. 
special processing by PAWS/STEM are: 

The SURE special constants which do not initiate 

AUTOFAST LBFACT PRUNE QTCALC TRUNC WARNDIG. 

These constants are treated as any other user-defined constant by PAWS/STEM. 

The SURE reserved word command which has an altered meaning in PAWS/STpI 

is: 

LEE. 

The LEE command causes a change in processing in PAws/STEM different than 
that of SURE. If the LEE command is given in PAws/STEM, the program will not 
compute an answer once the RUN command is issued and the following error 
message will be displayed, 

*** LEE MODE ILLEGAL IN ttprog" *** 

where l'prog'' equals PAWS or STEM depending on which program is used ( See 
Example 4 .  ) .  

All transition statements interpreted by PAWS/STEM are interpreted as 
exponential transitions. 
as 

The SURE White mode semi-Markov transition specified 

is interpreted during computation as 

"source", "dest" = { "frac" ) / "mu" ; 

35 



where 

"mu" 

"sig" = 

"frac" = an optional expression defining the transition probability( if 

= an expression defining the conditional mean transition time, 
an expression defining the conditional standard deviation of the 
transition time, 

omitted "frac" = 1 . O  1 ,  

and "source" and "dest" define the source and destination states respectively. 

As noted above the Lee method is not compatible with PAws/STEM. The Lee 
method statement, 

@ "source" = <"hmu", "quant' , "prob"> 

will not be interpreted by PMS/STEM and the following error message will be 
reported to the user: 

***** STATE OUT OF RANGE - 

Any exponential transition specified using the FAST exponential description 
of SURE is treated as any other transition specified with an exponential rate. 

SURE provides access to the results of prior "RUNS" in a session through 
use of special symbols. Examples of the SURE syntax for these symbols follows: 

#U2 -- upperbound of solution for RUN #2 (no variable) 
#L1 -- lowerbound of solution for RUN #1 (no variable) 

#L1[3] -- 
#U2[1] -- 

lowerbound of solution for third value of variable on RUN #1 
upperbound of solution for first value of variable on RUN #2 

PAWS/STEM, which compute exact solutions, will interpret these symbols by 
retrieving the exact solution. For example, if either #L2 or #U2 is used, 
PAWS/STEM retrieves the exact solution of the second RUN. Information 
requested from "RUNS" performed using a variable is handled similarly. 

36 



APPENDIX B 

ERROR MESSAGES 

The following error  messages are generated by the PAwS/STFM programs. Some 
error messages may be generated by only one of either PAWS or STEM. When this 
occurs, it will be noted in the message's description; otherwise, assume the 
error message is common to both programs. The list of error messages in 
alphabetical order is: 

ARGUMENT TO EXP FUNCTION MUST BE < 8.802893+01 - The argument to the EXP 
function is too large. 

ARGUMENT TO LN OR SQRT MUST BE > 0 - The LN and SQRT function require 
positive arguments. 

ARGUMENT TO STANDARD FUNCTION MISSING - No argument was supplied for a 
standard function. 

- COMMA EXPECTED - - Syntax error; a comma is needed. 

CONSTANT EXPECTED - Syntax error; a constant is expected. 

DIVISION BY ZERO NOT ALLOWED - A division by 0 was encountered when 
evaluating the expression. 

ERROR OPENING FILE - <vms status) - The program was unable to open the indicated 
lile. 

FILE NAME Too LONG - File names must be 80 or less characters. 

FILE NAME EXPECTED - Syntax error, the file name is missing. 
"id" CHANGED To x - The value of the identifier id is being changed to x. 

r'id" CHANGED TO X TO Y - The range of the variable "id" is being changed. 

"id" NOT FOUND - The system is unable to SHOW the identifier since it has not 
yet been defined. 

IDENTIFIER EXPECTED - Syntax error, identifier expected here. 

IDENTIFIER NOT DEFINED - The identifier entered has not yet been defined. 

ILLEGAL CHARACTER - The character used is not recognized. 

ILLEGAL INPUT VALUE - A non-numeric character was entered in response to the 
INPUT command prompt. 

ILLEGAL STATEMENT - The command word is unknown by the system. 

37 



INPUT ALREADY DEFINED AS THE VARIABLE - An attempt was made to input a value for 
an identifier that was already defined as the variable. 

INPUT LINE Mo LONG - The command line exceeds the 100 character limit. 

INTEGER EXPECTED .- - Syntax error, an integer is expected. 

MORE THAN ONE SOURCE STATE IN MODEL - The model entered by the user has more 
than one source state (i.e., a state with no transitions into it). If a start 
state has been specified by a START command, it is used. Otherwise, the program 
arbitrarily chooses a start state. 

MUST BE IN "READ" MODE - The INPUT command can be used only in a file processed 
by a READ conarand. 

No RUNS MADE YET - The ORPROB command was called before any runs were made. 

NUMBER TOO LONG - Only 15 digits/characters allowed per number. 

ONLY 1 VARIABLE ALLOWED - Only one variable can be defined per model. 

ONLY 100 VARIABLE RESULTS STYXED - the ORPROB conunand can only process the first 
values of the variable per run. 

REAL EXPECTED - A floating point number is expected here. 

SEMICOLON EXPECTED - Syntax error; a semicolon is needed. 
START STATE ASSUMED TO BE x - There was no source state in the model and no 
start state was specified via a START command so the program arbitrarily 
selected x as the start state. 

SUB-EXPRESSION Too LARGE, i.e. > 1.70000E+38 - An overflow condition was 
encountered when evaluating the expression. 

TRANSITION NOT FOUND - The system is unable to SHOW the transition because 
has not yet been defined. 

VMS FILE NOT FOUND - The file indicated on the READ comand is not present 
the disk. 

- 0 STATES IN MODEL - The RUN command found no states in the model. 

(Note: make sure your default directory is correct.) 

it 

on 

*** ERROR: INSTANTANEOUS TRANSITION AT STATE n. - One of the transitions from 
state n has been defined with a mean of zero. 

*** LEE MODE ILLEGAL IN ''prog" *** - "prog'l equals PAWS or STEM depending on 
which program is used. 

*** STATE x CANNOT MAP TO ITSELF - A state transition has been specified with 
the same state as both the from state and the destination state. 

***** STATE OUT OF RANGE - State number has been improperly specified. Must be 
within range 0 to 10,006. 

38 



n 

*** THE *CALC* EXPRESSION MUST BE ON 1 LINE - The mathematical expression 
processed by the CALC function must fit on one line. 
can be defined prior to the CALC function and used to simplify the CALC 
expression. 

*** VARIABLES INCONSISTENT BETWEEN RUNS - the ORPROB command cannot process the 
preceding runs since they did not use the same variable or the same values of 
the variable. 

Constant sub-expressions 

*** WARNING: REMAINDER OF INPUT LINE IGNORED - Any commands that followed the 
READ command on the same line were ignored. 

*** WARNING: RUN-TIME PROCESSING ERRORS - Computation overflow occurred during 
execution. 

*** WARNING: SYNTAX ERRORS PRESENT BEFORE RUN - Syntax errors were present 
during the model description process. 

****COmATION AEORTED**** - STEM exited computation due to inability to 
produce an accurate answer. 

*** WARNING: VARIABLE CHANGED! - If previous transitions have been defined using 
a variable and the variable name is changed, inconsistencies can result in the 
values of the transitions. 

= EXPECTED - Syntax error; the = operator is needed. 

> EXPECTED - Syntax error; the closing bracket > is missing. 

) EXPECTED - A right parenthesis is missing in the expression. 

J EXPECTED - A right bracket is missing in the expression. 

39 



REFERENCES 

1. Siewiorek, Daniel P.; and Swarz, Robert S.: The Theory and Practice of 
Reliable System Design, Digital Press, 1982, pp. 246-302. 

2. Siewiorek, Daniel P.; and Swarz, Robert S.: The Theory and Practice of 
Reliable System Design, Digital Press, 1982, pp. 31-43. 

3. Lala, Jaynarayan H.; and Smith, T. Basil, 111: Development and 
hraluation of a Fault-Tolerant Multiprocessor (FTMP) Computer. Volume 
I11 - FTMP Test and Evaluation. NASA CR-166073, 1983. 

4. Finelli, George B.: Characterization of Fault Recovery through Fault 
Injection on FTMP. IEEE Transactions on Reliability, Vol. R-36, June, 
1987, pp. 164-170. 

5. Trivedi, Kishor; Dugan, Joanne Bechta; Geist, Robert; and Smotherman, 
Mark: Modeling Imperfect Coverage in Fault-Tolerant Systems. The 
Fourteenth International Conference on Fault-Tolerant Computing - FTCS 
14, Digest of Papers, 84CH2050-3, IEEE, 1984, pp. 77-82. 

6. Bavuso, S. J.; and Petersen, P. L.: CARE I11 Model Overview and User's 
Guide (First Revision). NASA TM-86404, 1985. 

7. Butler, Ricky W.: The Semi-Markov Unreliability Range Evaluator (SURE) 
Program. NASA "M-86261, 1984. 

8. Butler, Ricky W.; and White, Allan L.: SURE Reliability Analysis -- 
Program and Mathematics. NASA TP-2764, March 1988. 

9. Butler, Ricky W.: An Abstract Language for Specifying Markov Reliability 
Models. IEEE Transactions on Reliability, Vol. R-35, December, 1986, 
pp. 595-601. 

10. Johnson, Sally C.: ASSIST User's Manual. NASA TM-87735, August, 1986. 

40 



11. Moler, C. 8.; and Van Loan, C.: Nineteen Dubious Ways to Compute the 
Exponential of a Matrix, SIAM Review, Vol. 20, No. 4, Oct. 1978, pp. 
801-836. 

12. Ward, Robert C.: Numerical Accuracy of the Matrix Exponential with 
Accuracy Estimate, SIAM Journal of Numerical Analysis, Vol. 14, No. 4, 
Sep. 1977, pp. 600-610. 

13. Liou, M. L.: A Novel Method of Evaluating Transient Response, Proceedings 
of the IEEE, Vol. 54, Jan. 1966, pp. 20-23. 

14. Bickart, Theodore A.: Matrix Exponential: Approximation by Truncated 
Power Series, Proceedings of the IEEE, Vol. 56, May, 1968, pp. 872- 
873. 

41 



NASA TM- 100572 
4. Title and Subtitle 

The PAWS and STEM Re1 i a b i  1 i ty  A n a l y s i s  Proarams 

7. Authods) 

Ricky W. B u t l e r  
P h i l i p  H. Stevenson 

9. Performing Organization Name and Address 

5. Report Date 

____ rlarch 1988 
TPer forming  Organization Code 

8. Performing Organization Report No. 

10. Work Unit No. 

NASA Langley Research Center 
Hampton, VA 23665-5225 

17. Key Words (Sugpted  by Author(s)l 
Markov Model 
R e l i a b i l i t y  Ana lys is  
Faul t -To le rance 
R e l i a b i l i t y  Flodel ing 

12. Sponsoring Agency Name and Address 

18. Distribution Statement 
U n c l a s s i f i e d  - U n l i m i t e d  

S t a r  Category 65 

Nat iona l  Aeronaut ics  and Space A d m i n i s t r a t i o n  
Washington, DC 20546-0001 

20. Security Classif. (of this page) 21. No. of pages 1% Security Classif. (of this report) 

U n c l a s s i f i e d  Uncl a s s i  f i  ed 43 

4 505-66-21-01 

22. Price 

A0 3 

Technica l  Memorandum 

I 

16. Supplementary Notes 

Ricky W .  B u t l e r ,  Langley Research Center, Hampton, V i r g i n i a .  
Phi  1 i p H. Stevenson, P1 anni  ng Research C o r p o r a t i  on, Hampton , V i  r g i  n i  a. 

16. Abstract 

The PAWS and STEM programs are new design/validation tools. These programs 
provide a flexible, user-friendly, language-based interface for the input of 
Markov models describing the behavior of fault-tolerant computer systems. 
These programs produce exact solutions of the probability of system failure 
and provide a conservative estimate of the number of significant digits in the 
solution. PAWS uses a Pad6 approximation as a solution technique; STEM uses a 
Taylor series as a solution technique. 
solve numerically "stiff" models. 
properties with regard to their input space; and, an additional strength of 
these programs is that they accept input compatible with the SURE program. 
used in conjunction with SURE, PAWS and STEM provide for a powerful suite of 
programs to analyze the reliability of fault-tolerant computer systems. 

Both programs have the capability to 
PAWS and STEM possess complementary 

If 


